
 1

2.1B：Introduction to MatLab Image Library
Chap. 1: Fundamental
 1.1: input and output 1.2: Data type and matrices 1.3: Image arithmatics

1.1: Image Input, output and display
1.1.1: Read and Display

clear;close all;clc; % Clear all variables in the workspace and close figure windows.

I = imread('pout.tif'); % Reads an image from a file named ‘pout.tif’ and stores it %

in an array named ‘I’.

imshow(I) % Display the image in the array (matrix) I.

 There are two function for displaying images on the screen: imshow and imveiw.

Imshow: access to figure annotation and printing capabilities.

Imview: displays in a separate Java-based window and provide additional tools in

navigating and inspecting around an image, especially large images.

 2

Image viewer and

related tools

 3

1.1.2: Check intensity distribution and Modify the image

 figure, imhist(I) % figure command holds the image shown before.

 % imhist command shows the intensity distribution (histogram)

% of the image I.

On the left is the image ‘pout.tif’

saved in the ‘I’ matrix and displayed

using the MatLab command

 Imshow(I)

Imshow

 4

•

 I2 = histeq(I); % histeq function spreads the intensity values over the full

range so that the contrast is enhanced as will be seen later.

 imview close all % To close all java-based windows opened by imview.

figure, imshow(I2) % To show image ‘I2’ as is given in the next page.

The histogram of image ‘I’ shown

by using the following command:

figure, imhist(I)

The intensity is ‘condensed’ in a

narrow range.

 5

1.1.3：Save a matrix as an image and check an image in the workspace

 imwrite (I2, 'pout2.jpg'); % Save the matrix ‘I2’ in the format ‘JPEG’ under the

%name ‘pout2’.

The left image ‘I2’

now has a better

contrast than the

original ‘I1’ due to

‘stretch’ histogram.

 6

 imfinfo('pout2.jpg') % Check the properties of ‘pout2.jpg’ (e.g. colour or

% gray image, format, size, etc.)

1.2. Data types and matrices

When processing, MatLab save each image as a matrix. For gray image, it is a

NM × matrix；while for color image, it is a 3××NM matrix.

However, elements of image matrices usually are integer elements >=0, while

elements of ordinary matrices are usually floating points. Since they have different data

types, operations defined for ordinary matrices (floating point data) cannot be applied to

matrices of images (positive integers), neither can operations defined on matrix images

be applied to ordinary matrices.

Hence one should always be aware of the data type of a matrix (representing image

or ordinary floating-point data) in applying MatLab functions.

 7

 In general, operations which we are familiar, such as 「+」、「-」、「*」、「conv2」

and so on are defined for ordinary matrices (in the format of floating-point).

On the other hand, operations applicable to images (matrices with positive integer

elements) generally begins with two characters 「im」, such as「imread」、「imshow」、

「imadd」、「imsubtract」.

1.2.1: Types of matrices and legal operations

 There are several types of matrices to save an image

 uint8 and uint16：save the image data as 8-bit or 16-bit unsigned integers (i.e.,

all elements are semi-positive definite integers).

 double：save image data as 64-bit floating-point numbers.

 logical: a matrix with all elements as 0's (off pixels) and 1's (on pixels).

 Example:

 8

A=[2 -4; 0 8];B=double(A);C=uint8(A);BW=im2bw(A); returns

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ −
=

10
01

,
80
02

,
0.80.0
0.40.2

,
80
42

BWCBA

Most MATLAB functions accept only double (double-precision) format and reject

uint8 or uint16 data, while find, all, any, conv2, convn, fft2, fftn, and

sum functions accept all three types.

For instance, basic MATLAB arithmetic operators do not accept uint8 or uint16

data. If you attempt to add two uint8 images, A and B, you get an error, such as

• C = A + B

• ??? Function '+' not defined for variables of class 'uint8'.

To perform addition (or other arithmetic operations) of two uint8 images, A and B,

you have to use「imadd」(or「imsubtract」、「immultiply」、「imdivide」)

 9

1.2.2: Types of matrices for image storages

Images are stored as matrices in MatLab, hence the above types of matrices

corresponds to types of images

 Binary images: data are stored using matrices of the format logical

 Gray images: data are stored as matrices in the format uint8、uint 16、double

 Colour images: data are stored as a 3××NM uint8、uint 16、double

matrices with the 1st , 2nd and 3rd columns represents R、G、B components of an

image.

Example
• RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
• R=RGB(:,:,1); G=RGB(:,:,2); B=RGB(:,:,3);
• imshow(R),figure,imshow(G),figure,imshow(B),figure,imshow(RGB)

 10

 Indexed image: Image data consists of R、G、B components as (X, map).

 To Imread or imwrite an indexed image you need to key in (X, map)

 11

Image Type Storage Class Data type and Interpretation

Binary logical zeros (0) and ones (1)

double integers in the range [1, p]

Indexed uint8 or uint16 integers in the range [0, p-1]

double floating-point. Typical value range [0, 1].

Intensity1
uint8 or uint16 Array of integers. Typical range [0, 255].

RGB double m*n*3 floating-point values in the range [0, 1].

 uint8 or uint16 m*n*3 integers in the range [0, 255].

 1 For intensity images the colormap is typically grayscale.

 12

1.2.3: Conversion between data types of matrices and image types

 Conversion between data types

You can use uint8, double and im2bw to convert data types of a matrix before

using a proper operation

 Example:

A=[2.4 4.8; 2.5 6]; B=uint8(A); C=double(B); BW=im2bw(A)

 Returns

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −
=

11
01

,
0.60.2
0.00.2

,
62
02

,
65.2

8.44.2
BWCBA

 Conversion between image types

You can convert image type (data storage type) using the following functions:

 13

Function Description

gray2ind Create an indexed image from a grayscale intensity image

grayslice Create an indexed image from a grayscale intensity image by thresholding

im2bw Create a binary image from an intensity image, indexed image, or RGB image

ind2gray Create a grayscale intensity image from an indexed image

ind2rgb Create an RGB image from an indexed image

mat2gray Create a grayscale intensity image from data in a matrix, by scaling the data

rgb2gray Create a grayscale intensity image from an RGB image

rgb2ind Create an indexed image from an RGB image

 14

The followings are some example algorithms for gray images

Function Description

imcomplement Complement an image（適用 binary & gray images，用 1 or 255去減）

imadd Add two images（pixel-by-pixel 亮度相加）

imsubtract Subtract two images（pixel-by-pixel 亮度相減）

imabsdiff Absolute difference of two images（先「-」再求差的絕對值「｜｜」

imdivide Divide two images (element-by-element division)

immultiply Multiply two images(element-by-element multiplication)

imlincomb Compute linear combination of two images

 15

Homework I-A
(1) Read several gray images captured by an industrial camera into the workspace of

MatLab.

(2) Check the properties of the above input images (type, format and size)

(3) Examine the histogram of each image.

(4) Choose a proper threshold value for each image and write a program to change

the gray image into a binary image.

(5) Display the binary images one-by-one using ‘Imshow’.

(6) Examine the gray level of each image by using ‘Imviewer’, and explain why the

results in step (4) are.

(7) Applying the arithmetic algorithms in page 14 to each gray images and see how

they work by using ‘Imshow’ and ‘Imviewer’. █

 16

Homework I-B

Please use histogram and thresholding to segment objects in the following windows.

 17

For more Information regarding MatLab

You may find the following website useful:

(a) Homepage of MatLab Image Processing Toolbox

 http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.html

(b) You can download a user’s guide from

 http://www.mathworks.com/access/helpdesk/help/pdf_doc/images/images_tb.pdf

(c) You can also find a list of MatLab functions in the Image Processing Tool box at

 http://www.mathworks.com/access/helpdesk/help/toolbox/images/referenc.html#f

